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ABSTRACT

Objective: A variety of measurements have been individually linked to decline in mild cognitive
impairment (MCI), but the identification of optimal markers for predicting disease progression
remains unresolved. The goal of this study was to evaluate the prognostic ability of genetic, CSF,
neuroimaging, and cognitive measurements obtained in the same participants.

Methods: APOE �4 allele frequency, CSF proteins (A�1-42, total tau, hyperphosphorylated tau
[p-tau181p]), glucose metabolism (FDG-PET), hippocampal volume, and episodic memory performance
were evaluated at baseline in patients with amnestic MCI (n � 85), using data from a large multisite
study (Alzheimer’s Disease Neuroimaging Initiative). Patients were classified as normal or abnormal on
each predictor variable based on externally derived cutoffs, and then variables were evaluated as
predictors of subsequent conversion to Alzheimer disease (AD) and cognitive decline (Alzheimer’s
Disease Assessment Scale–Cognitive Subscale) during a variable follow-up period (1.9 � 0.4 years).

Results: Patients with MCI converted to AD at an annual rate of 17.2%. Subjects with MCI who
had abnormal results on both FDG-PET and episodic memory were 11.7 times more likely to
convert to AD than subjects who had normal results on both measures (p � 0.02). In addition, the
CSF ratio p-tau181p/A�1-42 (� � 1.10 � 0.53; p � 0.04) and, marginally, FDG-PET predicted
cognitive decline.

Conclusions: Baseline FDG-PET and episodic memory predict conversion to AD, whereas
p-tau181p/A�1-42 and, marginally, FDG-PET predict longitudinal cognitive decline. Complemen-
tary information provided by these biomarkers may aid in future selection of patients for clinical
trials or identification of patients likely to benefit from a therapeutic intervention. Neurology®

2010;75:230 –238

GLOSSARY
AD � Alzheimer disease; ADAS-Cog � Alzheimer’s Disease Assessment Scale–Cognitive Subscale; ADNI � Alzheimer’s
Disease Neuroimaging Initiative; AVLT � Auditory Verbal Learning Test; CDR � Clinical Dementia Rating; CI � confidence interval;
FDG � [18F]fluorodeoxyglucose; MCI � mild cognitive impairment; MNI � Montreal Neurological Institute; p-tau181p � hyperphos-
phorylated tau; ROC � receiver operating characteristic; t-tau � total tau.

Individuals with mild cognitive impairment (MCI) are a target population for evaluating very
early treatment interventions for Alzheimer disease (AD) since they represent an intermediate
stage between normal function and AD, and are at higher risk for decline than healthy older
individuals. Because individuals with MCI decline at different rates and some never develop
AD, there is a need for tools to select patients with MCI who would benefit most from
treatment. Existing research has implicated a number of biomarkers that predict cognitive
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decline or conversion to AD in this popula-
tion, including glucose metabolism reduc-
tions, measured by [18F]fluorodeoxyglucose
uptake (FDG-PET) in parietal, posterior cin-
gulate, and temporal brain regions1,2; MRI
evidence of medial temporal lobe and hip-
pocampal atrophy3-6; increased CSF total tau
(t-tau) and hyperphosphorylated tau (p-
tau181p), indicating neurofibrillary tangle pa-
thology, and decreased A�1-42, indicating
amyloid (A�) plaque pathology7-9; and pres-
ence of the apolipoprotein E (APOE) �4 al-
lele.10 While each of these measures has
independently shown promise for predicting
disease progression,11 they have not yet been
compared to one another in the same patient
population. Furthermore, the relative value of
biomarkers compared to neuropsychological
tests is not well-understood. Word list learn-
ing ability, a form of episodic memory, is a
particularly well-studied and strong predictor
of conversion.12-14 A number of studies have
compared the predictive value of 2 or more
biomarkers at a time, such as MRI and
CSF,15,16 MRI and cognitive testing,17-19

FDG-PET and CSF,8 FDG-PET and cogni-
tive testing,20 and MRI, CSF, and FDG-
PET,21 but findings have been inconsistent,
likely due to small sample sizes and a variety
of methodologic factors.

In this study, we used MCI participant
data from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI), a multicenter project
with approximately 50 medical center and
university sites across the United States and
Canada. ADNI is supported by the NIH, pri-
vate pharmaceutical companies, and non-
profit organizations, and has the primary goal
of evaluating MRI, PET, CSF, and clinical
measures acquired serially over 2–3 years.

We compared the prognostic ability of a
number of candidate biomarkers that were
obtained at baseline to determine which
marker or combination of markers is optimal
for predicting both conversion to AD and
cognitive decline. Determination of sensitive
and specific markers of very early AD progres-
sion is intended to help develop new treat-
ments and to decrease the time and cost of
clinical trials.

METHODS Subjects. A total of approximately 200 cogni-
tively normal older subjects, 400 subjects with MCI, and 200 pa-
tients with early AD are enrolled in ADNI, all of whom have had
MRI scanning, approximately 50% have had PET scanning, and
approximately 50% also agreed to lumbar puncture. As of April
2009, a subset of 85 subjects with MCI had baseline data available
for all measures of interest and were used for this study. Serial clini-
cal diagnostic assessments were carried out at 6, 12, 18, 24, and 36
months. Approximately 8% of subjects completed 3 visits (12 mo),
15% completed 4 visits, the majority, 72%, completed 5 visits (24
mo), and the remaining 5% completed 6 visits (36 mo). Conversion
to AD was established at individual recruitment sites, with review
centrally, and none of the variables used in the prediction of out-
come were used as indicators of conversion. An examination of each
measure for outliers revealed that 3 subjects had abnormally high
t-tau, p-tau181p, or both (Z score �3), so they were excluded from
tests that involved these measurements.

Full inclusion/exclusion criteria are described in detail at
www.adni-info.org. Briefly, all subjects were between ages 55
and 90 years, had completed at least 6 years of education, were
fluent in Spanish or English, and were free of any other signifi-
cant neurologic diseases. Subjects with MCI were classified as
single-domain or multidomain amnestic MCI,22 normal subjects
had Clinical Dementia Rating (CDR) scores of 0, and patients
with AD met standard diagnostic criteria.23

The Alzheimer’s Disease Assessment Scale–Cognitive Sub-
scale (ADAS-Cog)24 and diagnostic status (remaining stable as
MCI or converting to AD) were the outcome variables of inter-
est. The ADAS-Cog contains 11 items assessing fundamental
cognitive functions (language, memory, praxis, comprehension),
and the total score ranges from 0 to 70, with a higher score
indicating poorer cognitive function.

Candidate predictors included presence of an APOE �4 al-
lele, neuroimaging measurements (FDG-PET, hippocampal vol-
ume), CSF biomarkers (A�1-42, t-tau, p-tau181p), and episodic
memory performance on the Auditory Verbal Learning Test
(AVLT), all obtained at baseline.

Standard protocol approvals, registrations, and patient
consents. The procedures for this study were approved by institu-
tional review boards of all participating institutions. All subjects gave
written, informed consent to blood sampling, lumbar puncture,
cognitive testing, and neuroimaging prior to participation.

Biomarker predictors. Episodic memory. The total number
of words correctly recalled on all 5 immediate recall trials of the
AVLT25 was assessed at baseline and used as a predictor variable
in our analysis because recent studies have shown that word list
learning in particular is a predictor of conversion compared to
other neuropsychological tests.12-14

Genetic. APOE genotypes were determined for all ADNI
subjects through analysis of blood samples that was carried out at
the University of Pennsylvania Alzheimer’s Disease Biomarker
Laboratory.

Hippocampal volume. Structural magnetic resonance scans
(1.5-T) were acquired at multiple ADNI sites using a standard-
ized MRI protocol described elsewhere.26 Bilateral hippoc-
ampal volumes were obtained using Freesurfer software
(http://surfer.nmr.mgh.harvard.edu), an atlas-based approach
that has been validated for use in subjects with a great deal of
morphologic variability.27 More information is provided in ap-
pendix e-1 on the Neurology® Web site at www.neurology.org.

CSF biomarkers. CSF biomarker variables included A�1-42,
t-tau, and p-tau, phosphorylated at threonine 181, in pg/mL
(p-tau181p), as well as ratios (t-tau/A�1-42, p-tau181p/A�1-42).
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Methods for analysis have been previously described28 and are

provided online.

FDG-PET. ADNI PET data were acquired at sites

nationwide using a protocol described elsewhere

(http://www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml).

Briefly, PET images were acquired 30 – 60 minutes postinjec-

tion. Images were averaged, spatially aligned, interpolated to

a standard voxel size, intensity normalized, and smoothed to a

common resolution of 8-mm full width at half maximum.

Spatial normalization of each individual’s PET volume to the

standard 15O-H2O PET template was conducted using

SPM529 (template voxel dimensions: 91 � 109 � 91; voxel

size: 2 mm � 2 mm � 2 mm). PET volumes were intensity

normalized to a single region made up of the cerebellar ver-

mis, defined by the AAL region within the Montreal Neuro-

logical Institute (MNI) atlas, and the pons, defined by

manual tracing on the MNI template. Methods for analysis

have been previously described30 and are provided in appen-

dix e-1 on the Neurology� Web site at www.neurology.org.

Cutoffs for subject classification. Dichotomous forms of
all independent variables (defined as AD�/AD�) with the ex-
ception of APOE were established using receiver operating char-
acteristic (ROC) analyses with AD and cognitively normal
ADNI participants to determine optimal cutoffs for each mea-
sure. Cutoffs for each variable were selected by choosing the
threshold that optimized both sensitivity and specificity, and
were subsequently used to categorize subjects with MCI as AD�

or AD� on each measure. ROC analyses were carried out using
all available ADNI data for each measure.

For APOE, subjects were divided based on the presence
(AD�) or absence (AD�) of at least one APOE �4 allele.

Statistical analyses. Statistical analyses were carried out using
SPSS 16.0. Independent samples t, Mann-Whitney U, and �2

tests were used to assess differences between converter and non-
converter groups on each measure and associations between di-
chotomized variables. Positive predictive value was calculated as
the number of MCI converters correctly classified as AD� di-
vided by all MCI converters, and negative predictive value was
the number of MCI nonconverters correctly classified as AD�

divided by all MCI nonconverters.
Both univariate and multivariate models were examined to

assess the degree to which each baseline predictor was associated
with the outcome measure independently or in conjunction with
the other variables. However, due to overlap in AD�/AD� sta-
tus among CSF measures (table e-2 in appendix e-1), only one
CSF measure could be included in multivariate models.
p-tau181p/A�1-42 was selected because it showed the strongest
prediction of conversion at the univariate level. Thus, 5 variables
were included in the multivariate analyses: APOE status, FDG-
PET, hippocampal volume, p-tau181p/A�1-42, and AVLT recall.

For the Cox proportional hazards models predicting conver-
sion, the time variable was amount of time (in years) from base-
line to the visit in which AD was diagnosed, or to the most
recent visit for censored cases. In the mixed effects models, the
outcome measure consisted of all available serial ADAS-Cog
measurements, which incorporated individual variability in the
number of completed visits, missing data, and individual vari-
ability in between-scan intervals.31 Each model included a ran-
dom intercept to account for variability in individual starting
point, and time between visits (in years since the initial visit) was
computed separately for each individual. The interaction term
for each independent variable of interest � time represents the
degree to which that variable was associated with change in the
ADAS-Cog over time.

Assumptions of linearity were verified for each model. Age,
education, and sex were included as covariates in all models, and
all statistical tests were evaluated for statistical significance at
� � 0.05, 2-sided, and trends at 0.05 � � � 0.10.

RESULTS Differences between converters and non-
converters. Table 1 summarizes demographic infor-
mation for all groups (AD, MCI, normal), baseline
measurements for converter and nonconverter MCI
groups, and statistical differences between converter
and nonconverter groups. Of the 85 MCI partici-
pants, 28 (32.9% total, or an annual rate of 17.2%)
converted to AD. None of the subjects with MCI
reverted to a normal diagnosis or converted to a non-
Alzheimer dementia. Converters and nonconverters
did not differ on demographic characteristics, but
were either significantly or marginally different on

Table 1 Means (SD) of demographic and cognitive measures are shown for all
subject groups, and baseline variables of interest are shown for
nonconverter and converter subjects with MCIa

AD Normal

MCI

pConverters Nonconverters

No. 193 229 28 57

M/F 102/91 119/109 19/9 37/20 NS

Age, y 78.2 (7.5) 79.0 (5.0) 78.3 (7.5) 78.0 (7.4) NS

Education, y 14.7 (3.1) 16.0 (2.9) 16.4 (2.6) 16.3 (2.8) NS

ADAS-Cog (baseline) 18.6 (6.3) 6.2 (2.9) 13.2 (4.6) 10.3 (3.9) 0.003*

MMSE (baseline) 23.4 (2.0) 29.1 (1.0) 26.4 (1.7) 27.3 (1.6) 0.03*

Predictor variables of interest

Total follow-up time, y 1.9 (0.4) 1.9 (0.4) NS

Genetic

APOE �4 percentage 0.41 0.25 0.07

Neuroimaging

FDG-PET 1.13 (0.10) 1.22 (0.14) 0.04*

Hippocampal volume, mm3 2,883 (558) 3,187 (527) 0.06

CSF biomarkers, pg/mL

A�1–42 149.7 (45.3) 165.7 (57.9) 0.16

p-tau181p 37.1 (10.7) 34.3 (17.8) 0.02*

t-tau 94.0 (28.1) 100.6 (55.3) 0.11

p-tau181p/A�1–42 0.27 (0.12) 0.25 (0.18) 0.01*

t-tau/A�1–42 0.68 (0.27) 0.75 (0.62) 0.13

Memory

AVLT 26.4 (6.6) 32.2 (8.1) 0.01*

Abbreviations: AD � Alzheimer disease; ADAS-Cog � Alzheimer’s Disease Assessment
Scale–Cognitive Subscale; AVLT � Auditory Verbal Learning Test; FDG �

�18F	fluorodeoxyglucose; MCI � mild cognitive impairment; MMSE � Mini-Mental State Ex-
amination; p-tau181p � hyperphosphorylated tau; t-tau � total tau.
a Values are mean (SD). Significant p values (*p � 0.05) and trends (0.05 � p � 0.10) are
shown for tests of differences between converter and nonconverter groups using continu-
ous forms of the variables. Note that for ADAS-Cog, t-tau, p-tau181p, t-tau/A�1– 42, and
p-tau181p/A�1– 42, a higher mean is associated with greater impairment, whereas for the
other measures a lower mean is associated with greater impairment.
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cognitive variables and predictor variables of interest.
Agreement between AD� and AD� categorizations
across variables is reported online.

Classification of AD� and AD� subjects. Table 2
summarizes the numbers of normal subjects, subjects
with MCI, and subjects with AD with available data
for all measures of interest, and the ROC analysis
results, which include the area under the curve (range
0.80–0.95), threshold value, sensitivity (range 71%–
93%), specificity (range 70%–88%), and overall ac-
curacy (range 74%–90%) for classification of normal
subjects and subjects with AD with each measure.
Finally, the thresholds for each measure were applied
to the MCI participants to determine positive and
negative predictive values for conversion.

Cox proportional hazards models: Predicting conver-
sion. In univariate models, several variables were as-
sociated with increased risk of conversion to AD. As
shown in table 3, subjects categorized as AD� on
FDG-PET, hippocampal volume, p-tau181p, p-
tau181p/A�1-42, AVLT, and, marginally, APOE had a
higher risk of converting than AD� subjects on each
measure (hazard ratio range 2.94–4.68). In the mul-
tivariate model, only FDG-PET and AVLT re-
mained significant predictors. Specifically, subjects
who were AD� on FDG-PET had a 2.72 (p � 0.05)
greater risk of converting to AD than subjects who

were AD� on FDG-PET (figure, A), assuming equal
AD� status on the other variables, and this risk was
4.30 (p � 0.02) for AVLT (figure, B). Taken to-
gether, these findings indicate that the 36 subjects
(42%) who were AD� for both FDG-PET and
AVLT had an 11.7-fold (95% confidence interval
[CI] 2.22–61.75) greater risk of converting to AD
than subjects categorized as AD� on both measures.

Mixed effects models: Predicting cognitive decline.

Average decline on the ADAS-Cog was 1.11 ADAS-
Cog points/year (95% CI 0.69–1.53). All baseline
variables predicted subsequent ADAS-Cog decline in
univariate models, although AVLT was marginally
significant (table 3). In the multivariate model, high
p-tau181p/A�1-42 remained a significant predictor
(p � 0.04), low FDG-PET was a marginally signifi-
cant (p � 0.09) predictor, and no other variables
were significant (p � 0.33). The 43 subjects (51%)
who were AD� on p-tau181p/A�1-42 had an in-
creased ADAS-Cog annual decline rate of 1.10 units/
year compared with AD� subjects, accounting for
all other variables (0.77 units/year for FDG-PET).

DISCUSSION The goal of this multicenter longitu-
dinal study was to compare a variety of candidate
predictors of decline in MCI over a follow-up period
of approximately 2 years. All of these biomarkers

Table 2 Normal, MCI, and AD subjects with available data for all measures of interest and ROC analysis results

Genetic:
APOE �4

Neuroimaging CSF biomarkers

Memory:
AVLTFDG-PET

Hippocampal
volume A�1– 42 p-tau181p t-tau

p-tau181p/
A�1– 42

t-tau/
A�1– 42

Sample sizesa

AD 193 97 146 102 102 100 102 100 193

MCI 85 85 85 85 84 83 83 83 85

Normal 227 102 198 114 114 114 114 114 229

ROC curve analyses (AD and normal)b

ROC AUC 0.88 0.89 0.81 0.80 0.80 0.84 0.85 0.95

Threshold value 1.21 3,260.40 165.50 26.10 86.80 0.14 0.46 33.50

Sensitivity, % 82 79 82 80 71 87 85 93

Specificity, % 70 82 70 70 77 70 78 88

Overall accuracy, % 76 81 76 75 74 78 81 90

Positive/negative predictive
value (MCI), %

Positive predictive value 40 41 41 38 42 42 42 39 41

Negative predictive value 74 79 78 76 83 73 87 76 88

Abbreviations: AD � Alzheimer disease; AUC � area under the curve; AVLT � Auditory Verbal Learning Test; FDG � �18F	fluorodeoxyglucose; MCI � mild
cognitive impairment; p-tau181p � hyperphosphorylated tau; ROC � receiver operating characteristic; t-tau � total tau.
a The number of subjects with AD and normal subjects with available data varied for each measure.
b ROC analyses using available data for subjects with AD and normal subjects were carried out to establish threshold values for abnormal (AD�) and normal
(AD�) cutoffs used in subsequent models. The AUC, threshold values used as cutoffs, and the sensitivity, specificity, and overall accuracy (calculated using
subjects with AD and normal subjects) are shown for each measure. The positive predictive value (percent MCI converters correctly classified as AD�) and
negative predictive value (percent MCI nonconverters correctly classified as AD�) were also calculated for subjects with MCI using the ROC-derived
cutoffs.
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were significant predictors of conversion or decline
in univariate models. In multivariate models predict-
ing conversion, glucose metabolism and episodic
memory function were significant. Individuals who
were abnormal (AD�) on both FDG-PET and
AVLT were 11.7 times more likely to convert to AD
than individuals who were normal on these mea-
sures. In multivariate models predicting decline, the
CSF ratio p-tau181p/A�1-42 (and, marginally, FDG-
PET) were significant when accounting for all the
other variables.

There were several noteworthy features of our ap-
proach. First, cutoffs used to classify subjects with
MCI as abnormal or normal on each predictor vari-
able were derived from an independent sample, and
are therefore potentially applicable outside of this
population. Second, all predictors were defined a pri-
ori, as opposed to frequently used exploratory meth-
ods, such as voxel-wise analyses for PET and MRI
data, that are optimized for a study-specific dataset.
The availability of data through ADNI made it pos-
sible to directly compare all of these predictors in the
same individuals for the first time. Finally, the use of
dichotomous predictors, as opposed to a continuous
variable, provides a precise way of selecting individ-
ual subjects with MCI for a clinical trial or potential
treatment.

The fact that different combinations of markers
predict conversion status and cognitive decline sug-
gests that these markers may track different aspects of
disease progression. Predictors associated with con-
version (AVLT and FDG-PET) likely reflect disease
severity, i.e., how close an individual is to a signifi-
cant clinical transition. On the other hand, predic-
tors associated with cognitive decline (primarily CSF
p-tau181p/A�1-42, and secondarily FDG-PET) likely
reflect rate of change, independent of absolute dis-
ease severity.

Studies comparing the predictive value of multi-
ple biomarkers have been variable, although several
useful meta-analyses or reviews have summarized re-
cent findings.11,32-34 Our data are consistent with re-
ports of the predictive value of CSF biomarkers,35,36

and a recent large, multicenter study that is one of
the few to use externally derived cutoffs.7 Our results
are consistent with previous reports of the predictive
value of FDG-PET,1 studies that have examined
both FDG-PET and APOE,37,38 and a report that
FDG-PET was superior to the Mattis dementia
scale.20 Our findings are not in agreement, however,
with recent data indicating that MRI and PET were
superior to CSF in predicting cognitive decline.21

Additionally, although we found that FDG-PET and
AVLT performance were the best predictors of con-
version, our univariate findings are consistent with

Table 3 Results of Cox proportional hazards models, with potential
conversion to AD as the outcome measure, and mixed effects
models, with ADAS-Cog change as the outcome measurea

Conversion to AD Cognitive decline

Univariate Multivariate Univariate Multivariate

APOE �4

� � SE 0.66 � 0.40 NS 0.87 � 0.43 NS

HR (95% CI) 1.94 (0.89–4.21)

p 0.10 0.04*

FDG-PET

� � SE 1.08 � 0.045 1.00 � 0.51 1.26 � 0.43 0.77 � 0.46

HR (95% CI) 2.94 (1.23–7.04) 2.72 (0.99–7.47)

p 0.02* 0.05* 0.003* 0.09

Hippocampal volume

� � SE 0.91 � 0.45 NS 0.94 � 0.43 NS

HR (95% CI) 2.49 (1.02–5.96)

p 0.04* 0.03*

CSF biomarkers

A�1–42

� � SE NS 1.14 � 0.46

HR (95% CI)

p 0.01*

p-tau181p

� � SE 1.06 � 0.50 1.54 � 0.44

HR (95% CI) 2.88 (1.09–7.59)

p 0.03* �0.001*

t-tau

� � SE NS 1.12 � 0.43

HR (95% CI)

p 0.01*

p-tau181p/A�1–42

� � SE 1.38 � 0.62 NS 1.74 � 0.47 1.10 � 0.53

HR (95% CI) 3.99 (1.19–13.32)

p 0.03* �0.001* 0.04*

t-tau/A�1–42

� � SE NS 1.22 � 0.45

HR (95% CI)

p 0.008*

AVLT

� � SE 1.54 � 0.63 1.46 � 0.64 0.83 � 0.47 NS

HR (95% CI) 4.68 (1.37–15.98) 4.30 (1.24–14.97)

p 0.01* 0.02* 0.08

Abbreviations: AD � Alzheimer disease; ADAS-Cog � Alzheimer’s Disease Assessment
Scale–Cognitive Subscale; AVLT � Auditory Verbal Learning Test; CI � confidence interval;
FDG � �18F	fluorodeoxyglucose; HR � hazard ratio; p-tau181p � hyperphosphorylated tau;
t-tau � total tau.
a Parameter estimates (�) and standard error (SE) are shown for all models, and HRs are
shown. Univariate models evaluated each predictor variable individually (left column), and
multivariate models (right column) evaluated APOE �4 allele frequency, FDG-PET, hip-
pocampal volume, p-tau181p/A�1– 42, and AVLT in the same model. Blank boxes appear for
predictors that were not included in multivariate models. Significant p values (*p � 0.05)
and trends (0.05 � p � 0.10) are shown. See Methods for details.
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studies showing that MRI and CSF,15,16,39 MRI and
cognition,17 and MRI and APOE40 measures are use-
ful for predicting conversion to AD, although others
have suggested that MRI measures are superior to
cognitive measures in predicting decline.18,19 Finally,
although studies of AD conversion frequently do not
account for rates of conversion or time-dependent
change as we have done here, our results are also
consistent with one study that did account for time
and compared p-tau181p, t-tau, and FDG-PET and
found that p-tau181p optimally predicted cognitive
decline, while FDG-PET optimally predicted
conversion.8

Inconsistencies in recent findings are likely due to
a variety of methodologic issues such as differences in
neuroimaging processing techniques and variable se-
lection, CSF protein immunoassay techniques, crite-
ria for setting cutoff points for subject categorization,
study design, and statistical analysis. Importantly,
few studies on AD prediction define predictor vari-
ables before evaluating their performance; instead, a
“predictive” measure is developed based on differ-
ences between MCI converters and nonconverters
and retrospectively applied to the initial population
without validating it in an independent population
(often due to sample size constraints).

An important limitation of our findings is that
the hippocampal and FDG-PET ROIs may not be
optimized for this sample. Whole-brain, data-driven,
voxel-based, or other approaches to the analysis of
PET or magnetic resonance data might have resulted

in stronger prediction outcomes for the imaging vari-
ables. Hippocampal volume was a significant predic-
tor of decline at the univariate but not multivariate
level, suggesting that the association between hip-
pocampal volume and decline may be mediated in
part by the other measures in our analysis. In con-
trast, other studies have reported a stronger role for
hippocampal or other structural measurements in
predicting decline,3 even when examined in conjunc-
tion with CSF measurements.16,41 However, the re-
gions of interest that we selected were study
independent, frequently associated with decline in
AD and MCI, and obtained through an automated
and standardized processing stream and are therefore
strong candidate measurements for clinical trials of
therapeutic treatments.

There are several other limitations of this study
that deserve comment. First, these models are based
on the subset of MCI participants who agreed to par-
ticipate in all biomarker testing, and future studies
will be needed to address the question of whether our
findings generalize to a broader sample, and whether
differences exist for single-domain and multidomain
MCI or for patients with amnestic MCI who convert
to non-Alzheimer dementias. Second, our results
may depend on the number and precise combination
of predictor variables included in the model. A
longer follow-up period may also result in model
changes, since the value of predictors is likely modu-
lated by the phase of disease. Clinical diagnosis of
AD involves factors that are difficult to standardize

Figure FDG-PET and AVLT survival curves show increased conversion over time for abnormal relative to normal subjects

Predicted survival curves based on Cox proportional hazards models (table 3) illustrate the univariate results for (A) FDG-PET and (B) AVLT, which were the
2 variables that remained significant in the multivariate model. Both curves show that for each variable, a higher proportion of AD� subjects (solid black
line) remained dementia-free over time compared to AD� subjects (dotted line). Age, education, and sex were included as control covariates. Proportion of
subjects remaining dementia-free is shown on the y-axis.
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and involves some degree of subjectivity and uncer-
tainty. Furthermore, there are other cognitive mea-
sures and biomarkers that may play important roles
in prediction that were not addressed here (such as
the CDR–sum of boxes, Mini-Mental State Exami-
nation, genetic markers, and diffusion tensor im-
aging measures). Importantly, forthcoming ADNI
data using PET tracers for A� deposition will help
elucidate the role of brain amyloid load in patient
outcomes.

The current clinical role of these, and other, bi-
omarkers in dementia care is relatively limited largely
because of the lack of effective treatment. However,
our results suggest that these biomarkers could be
effective in identifying patients with MCI who are
more likely to progress to AD over relatively brief
time periods. This approach could be useful for iden-
tifying patients who would benefit from treatment
when it becomes available and for selecting subjects
in clinical trials of therapeutic agents for MCI.
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